はじめよう固体の科学

電池、磁石、半導体など固体にまつわる話をします

MENU

物性

ボルタ電池:単純に見えて実は恐ろしく複雑な電池

ボルタ電池は高校の教科書で題材になっており、亜鉛電極と銅電極が硫酸水溶液に浸った非常にシンプルな構造をしています.ボルタ電池は電池反応の基礎として教わりますが、実際は極めて複雑な反応が起こっています.

電池:化学エネルギーから電気エネルギーへの変換

電池とは「化学エネルギーを電気エネルギーに変換する装置」を意味します.電気を化学エネルギーとして貯蔵できる点が画期的であり、携帯性・安全性・保存性に優れます.

超伝導:電気抵抗がゼロな材料

極低温で金属の電気抵抗はゼロに近づく、あるいは無限大に発散すると思われたのですが、そのどちらでもない現象が起きました.ある温度で、突然電気抵抗が「ゼロ」になったのです.「超伝導」の発見です.

負の熱膨張:温めると縮む不思議な材料

固体は温度を上げると膨張します.一方で、世の中には熱膨張が極めて小さい物質が存在します.それどころか、温度を上げると縮む物質まで存在します.常識に反するこのような物質は「負の熱膨張」物質と呼ばれます.

熱膨張:身近な現象も起源は意外と複雑

固体は温度を上げると膨張します.非常に身近な現象であり、日常生活でも熱膨張を実感することがよくあります.なぜ熱膨張は起こるのでしょうか.熱膨張の起源に迫るには物質の結晶構造にまでさかのぼる必要があります.

イオン化傾向と標準電極電位:イオンになりやすさの順番

鉄は錆びやすいのに、金は全く錆びません.「錆びる」とは酸化反応の一種で、「錆びやすい」は「酸化されやすい」と言い換えることができます.このような「酸化のされやすさ」を定量化する方法はないでしょうか.

強磁性、反強磁性、反磁性、常磁性…:磁性体とその特徴

全ての物質は原子から構成されており電子を含みます.電子はそれ自体が磁気モーメントを持ち、小さな磁石として振る舞います.そして、そのような磁気モーメントが数え切れないほど大量に存在するのが、我々の目にする物質です.