はじめよう固体の科学

電池、磁石、半導体など固体にまつわる話をします

MENU

バイヤー法 :きれいなアルミナの入手法

ホール・エルー法の普及には、純粋なアルミナを取り出す手法の確立が大きな役割を果たしており、その手法こそがバイヤー法です.

ホール・エルー法:高価なアルミニウムを安価な金属に変えた

ホール・エルー法は、電気の力でアルミナから純粋なアルミニウムを作り出します.100年以上前に編み出された手法でありながら、形を変えながら現在でもアルミニウムの精錬方法として使われ続けています.

学振特別研究員DCの給料はこの35年でどう変わったか

学振DCは、ありがたい支援制度ではあるものの、世間で賃上げの機運が高まっていたり、物価高が深刻な中で、月額20万円では心もとないこともまた事実.では、この月額20万円という額は妥当なのでしょうか.

炭素の同素体:炭素はつながるどこまでも

フラーレンの発見を皮切りに、カーボンナノチューブ、グラフェン、そして最近ではこれらの構造を組み合わせたような新たな同素体が報告されています.

単一金属触媒(Single-Atom Catalysts):たどりついた最小の触媒

固体触媒の表面積を大きくするほど活性は向上します.理想的には、原子が一つ一つ裸の状態でいてくれれば、あらゆる方向に表面が露出しており、全ての方向を触媒として用いることが可能になります.

電気エネルギー貯蔵のための誘電体セラミックス

キャパシタ(コンデンサ)は、化学エネルギーを介さず直接電気エネルギーを貯蔵可能なデバイスです.それゆえ瞬時に充電・放電が可能であり、大きな出力密度を示します.

マルチフェロイクス:磁気で電気を、電気で磁気を操る

マルチフェロイックを示す物質は、例えば磁場をかけることで電気分極を制御し、あるいは電場をかけることで磁化を制御することが可能です.

水素エネルギーの未来は?

無毒でありながらエネルギー密度の大きな水素への注目は大きいですが、果たして水素社会への変革はどこまで現実的なのでしょうか.

質量作用の法則?定比例の法則?:誤解を招く専門用語たち

一般名詞に基づいた用語にもかかわらず、直感的に意味が全く分からない用語が存在します.そうした用語は無駄に頭を悩ませるだけですし、初学者の学習の妨げになるしで、はっきり言って害悪でしかありません.

スレーター・ポーリング曲線とその向こう側:最も大きな飽和磁化を持つ物質を求めて

どのような系で飽和磁化が上がるか(あるいは下がるか)は元素一つ当たりの価電子数と関係があることが知られています.この関係をまとめたものがスレーター・ポーリング曲線です.

Prof. Mercouri G. Kanatzidisの経歴を振り返る

Prof. Mercouri G. Kanatzidis Mercouri Kanatzidisの名は材料科学の様々な文献で見つかります.特徴的な姓であることもあり、非常に目に付きます.Journal of the American Chemical Society (JACS) 誌でよく知らない固体物質がタイトルにあれば、かなりの…

酸化マンガン:二酸化マンガン以外もあるよ

マンガンと酸素のみから構成される物質が酸化マンガンです.二酸化マンガンが特に有名ですが、他にも様々な種類があり、マンガン元素の性質に由来するユニークな性質を示します.

人気記事ランキングTOP10(2024年)

いつもは堅苦しい記事ばかりですが、たまには気楽に、ブログのアクセス数ランキングでも集計してみます.

emuをμBに変換する方法【メモ】

磁性学の単位系にはいろいろなものが混在しており、用途に合わせて変換する必要があります.CGS単位系を用いる装置が多く、磁気モーメントを測定する装置はemu 単位で出力されます.

金属の腐食と錆形成のしくみ

金属が環境中の物質との化学反応によって変質あるいは消耗し、本来の機能を失ってしまう現象を腐食と呼びます.金属はいつしか酸化され、酸化物や水酸化物へと姿を変えます.

混成軌道:その概念への批判と反論

混成軌道の概念は大学化学の初等過程で導入され、化学の学術領域で当たり前のように使われます.しかし、その存在を全ての化学者が受け入れてきたわけではありません.

過酸化物と亜酸化物:酸素が多すぎる物質と少なすぎる物質

過酸化物は、酸素が通常よりも多く含まれている化合物で、その強力な酸化力が特徴です.対照的に、亜酸化物は酸素が通常よりも少ない状態で存在する化合物です.

PbO型構造:鉄系超伝導に向けた最もシンプルな構造

pbO型構造は、現在では最もシンプルな鉄系超伝導体の結晶構造として知られます.

リチウム二酸化炭素電池:過剰なCO2を電池材料として使う

CO2の活用方法の中でもとりわけ目を引くのが電池材料としての利用です.CO2を電池材料として使うことができれば、CO2を貯蔵する目的とエネルギー源として利用する目的の両方が果たせて一石二鳥です.

二酸化炭素の還元による再資源化(光触媒編)

光触媒の活躍するフィールドと言えば水分解でしたが、近年では光触媒をCO2還元に用いる研究が発展してきました.

二酸化炭素の還元による再資源化(電気分解編)

CO2を還元し有用な炭素材料として活用するプロセスのうち、電気エネルギーを用いた再資源化に着目していきます..

バンドギャップ:デバイス性能の鍵を握る、小さな隙間

ハンドギャップが大きすぎると、電子は移動することができず、電気抵抗の極めて大きい絶縁体となります.バンドギャップが存在しない場合、電子は自由に動き回ることができ、導体(金属)となります.

液体の金属元素としてのガリウム

ガリウムは、毒性が少なく、反応性も激しくなく安全に使用することができる唯一の液体金属元素です.

エレクトライド(電子化物):電子が「陰イオン」として存在する物質

電子が原子から離れて存在している物質、それがエレクトライド(電子化物)です.電子が原子のいないサイトを単独で占め、あたかも負の電荷を持つ陰イオンであるかのように振る舞います.

光のエネルギーの単位の変換方法 【メモ】

光は電磁波の一種であり、周波数に応じてエネルギーが決まります.周波数は波長や波数とも相関関係があるため、光のエネルギーを波長を用いて表すこともあります.

チタン酸ジルコン酸鉛(PZT):圧電セラミックスの覇者

圧電効果を示す材料の中で、最強クラスのシェアを誇るのがチタン酸ジルコン酸鉛(PZT)です.優れた圧電特性と良好な温度特性を示すことから、圧電セラミックスの覇者として、有害な鉛を含むにも関わらず、現在も使用され続けています.

ジルコニア(ZrO2)とハフニア(HfO2):古典的かつ最先端の材料

ジルコニアとハフニアは近年注目を集めている誘電材料です.薄膜状態での強誘電性が発見され、強誘電メモリの主役としてスターダムにのし上がろうとしています.

なぜ酸素の燃焼はいつも発熱反応なのか

なぜ酸素の燃焼によってエネルギーを取り出すことができるのでしょうか.火はなぜ熱いのでしょうか.化学的に言い換えるのであれば、なぜ酸素の燃焼は常に発熱反応なのでしょうか.

磁気記録材料:磁石を用いて情報を記憶する

磁気記録媒体では、磁石のS極・N極を0・1に対応させることで情報を記録します.磁気記録媒体として代表的なものは磁気テープとハードディスクドライブ(HDD)です.

粘土鉱物:ありふれた元素から無限の機能

を含むと軟らかくなり乾かすと固まる粘土は、造形材料として一級の性質を持ちます.その利用は古代から家屋や土器、粘土板の材料として始まり、「粘土には1000の利用法がある」とまで言われるようになりました.