中性の原子において、電子が増減することで原子核と電子の電荷のバランスが崩れて帯電し、イオンとなります.陽イオンと陰イオンは互いに逆の電荷を持つため、クーロン力によって互いに引き付け合います.
LiCoO2が特に優れている点は、高いLi+伝導度および電子伝導度、高いエネルギー密度、優れた可逆的な充放電特性を示すことです.発見から30年以上が経過してなおLiCoO2は携帯用バッテリーの正極材料として使われ続けています.
物性物理・物質科学・固体化学分野で知らない人のいない超有名人Robert Joseph Cava先生.ついにベル研究所からプリンストン大学へ移り、現在に至るまで存続する研究室の基礎が築かれました.新しい研究室ではどのような研究を展開するのでしょうか.
物性物理・物質科学・固体化学分野で知らない人はいない超大御所Robert Joseph Cava先生.物性物理には転換点となる出来事がいくつかありました.Cava先生は新しい潮流に迅速に対応し、各局面ごとに素晴らしい研究を展開していきます.
現在のCava先生の研究分野は超伝導、トポロジカル材料、磁気抵抗、スピン液体、二次元磁性体、ハイエントロピー合金と非常に多岐にわたります.では、その源流は何なのでしょうか.
イオン結合性の物質を扱う際、その物質がどの程度安定であるかの指標が必要になる場合があります.この「イオン結合性の物質の安定性」を見積もる指標である格子エネルギーを算出する際に使用されるのがボルン・ハーバーサイクルです.
原子にとって自由に動き回れる程度に広い空間を持つ物質群の一つがスクッテルダイト(Skutterudite)です.元は天然鉱物に由来する物質群ですが、その特徴的な結晶構造・組成の豊富さから、現在では熱電材料、超伝導体、磁性体など様々な分野で顔を覗かせま…
ナトリウムは海中に塩として含まれているように資源的に豊富で、リチウムに匹敵する電極電位を示すことから高出力の電池が作成可能です.このような考えのもと生まれたのが、ナトリウムと硫黄を組み合わせた電池であるナトリウム硫黄電池です.
「More Is Different」は1972年にAndersonがScience誌に発表したエッセイのタイトルです.簡潔で示唆に富む言葉であるからこそ、人によって様々な解釈をされる言葉でもあります.では、そもそもAndersonが伝えたかったことは何なのでしょうか.
なぜ水銀は液体なのでしょうか.水銀を初めて知った時に誰もが思い浮かぶ疑問ですが、答えはそれほど単純ではありません.原子や電子の世界にまで考えを及ぼすことではじめてその答えにたどり着きます.
ランタノイド収縮とはランタノイドを小さくするだけでなく、ランタノイドに続く元素の原子半径まで縮めてしまうほどの強い影響力を持ちます.
ある電子に働く原子核からのクーロン力が他の電子の存在によって弱められている状態を、遮蔽効果が働いていると表現します.遮蔽効果は、電子が複数あることによって起こる現象で、原子や分子の基礎物性や反応性の違いを非常にうまく説明することが可能です.
銅酸化物よりも前、高温超伝導体の候補として最も有力視されていた材料が塩化銅 (CuCl)です.高温超伝導体であるかどうかも分からないまま、その後の銅酸化物の発見によって歴史の闇に埋もれてしまいました.
隙間や空孔が多いと、「軽く」「表面積の大きい」材料となります.その分、強度は犠牲になるわけですが、前者のメリットの大きい分野ではスカスカな材料が好まれます.このように空孔が無数に含まれた機能材料を総称して多孔質材料と呼びます.
現在、高温超伝導体とは、液体窒素の沸点以上の温度で超伝導を示す物質であるとされます.銅酸化物は長い間、唯一の高温超伝導体でしたが、鉄系超伝導体がこの基準に迫り、水素化物が転移温度の記録を塗り替えました.
固体であってもイオンが流れることのできる物質が存在します.それどころか、物質によっては溶液よりも高いイオン伝導度を示します.このような材料は固体電解質(イオン伝導体、イオン導電体)と呼ばれ、化学センサや燃料電池、最近では全固体電池の材料と…
研究者は論文の発表、学会発表、特許の出願を通じて実名を広く公表しており、調べれば簡単に情報が見つかります.本人が個人サイトで公表していなかったとしても、研究者の情報はネット中に転がっています.経歴やこれまでの研究業績くらいは簡単に調べるこ…
磁気熱量効果(MCE)は、磁場をかけたり外したりすることで磁性体の温度が可逆的に変化する現象です.この現象を応用することで可能となるのが、磁気冷凍や断熱消磁といった冷却技術です.
2種類以上の原子(または分子)が結晶を形成する際に、一方がホストとなって様々な多面体を含んだ三次元的な骨格構造を形成し、もう一方がゲストとしてその骨格に内包されたような結晶構造を持つ物質をクラスレート(Clathrate)と呼びます.ゲストは大きな…
ペロブスカイトの結晶構造は非常に対称性の高い立方晶系をとっています.その堅牢な外見に反して、ペロブスカイトはとても柔軟に結晶構造を変化させることが出来るのです.
「磁気抵抗効果」とは、磁場をかけることで電気抵抗が変化する現象であり、通常は磁界の二乗に比例して電気抵抗が変化します.磁気抵抗効果は、磁気ディスクからの読み出しヘッドや磁気センサーなどに利用されています.
金属間化合物において、まさしくスターと言える代表的な結晶構造として知られるのがThCr2Si2]型構造です.豊富な元素の組み合わせを持ち、高温超伝導体(や重い電子系物質、磁気冷凍材料などの極めて興味深い物性を示す材料も多くあります.
空気電池(金属空気電池)は、既存の電池系を遥かに凌駕する理論エネルギー密度を持ちます.空気中に無限に存在する酸素を利用して電気エネルギーを取り出す事が可能であり、リチウムイオン電池よりも高いエネルギー密度を有し、軽量、安価、かつ高い安全性…
ケテラーの三角形のうち、イオン結合と金属結合に位置する領域にZintl相があります.Zintl相の化合物は、イオン結合と金属結合の中間的な性質を示し、イオン結晶にも金属にも分類できません.半導体的な電気伝導を示し、融点が高く、セラミックス(酸化物絶…
太陽光、炎、白熱電球、蛍光灯を人類は光源として活用してきましたが、ここに発光ダイオード(LED)が新しい光源として加わりました.発光ダイオード自体は20世紀前半に発明されたものですが、当時のLEDは赤色や黄色の光しか発する事ができません.白色光を…
研究室配属の時期には、研究室ごとに訪問日程が組まれることが多く、好きな研究室を訪問できます.そこで話を聞いて志望度を増したり減らしたりしながら最終的に志望する研究室を選びます.研究室見学の時間はせいぜい1時間なので、学生と歓談しているとあ…
研究室の予算状況は、研究室生活のQOLを決めます.配属先の研究室の予算規模をどうやって調べればよいでしょうか.お金の収支を詳らかにしている研究室は少ないですが、ネット上で手がかりを得ることはできます.少なくとも、貧乏研究室か金持ち研究室である…
論文発表や学会発表の他にも、研究室の業績となる事項は様々あります.特許の取得、研究室構成員の受賞、プレスリリース、外部資金の獲得、報道、寄稿などが挙げられます.研究室HPを見れば、これらの業績の内容が書かれているケースが多く、後悔しない研究…
研究室に配属した後、自分はどの程度の業績を挙げられるでしょうか.その人次第としか言いようがありませんが、これまでのアウトプットが優れた研究室ほど、優れた成果を挙げられる可能性が高まります.志望高校を選ぶ際に、大学などの進路実績を見るのと同…
研究室選びをする際に、簡単に利用できる情報源は、研究室のHPです.大抵の研究室は自身のHPを公開しています.いつでもアクセスできますし、ボスの好みのデザイン、アウトプットの量、その他にも様々な情報が分かります.