物質
金属が環境中の物質との化学反応によって変質あるいは消耗し、本来の機能を失ってしまう現象を腐食と呼びます.金属はいつしか酸化され、酸化物や水酸化物へと姿を変えます.
混成軌道の概念は大学化学の初等過程で導入され、化学の学術領域で当たり前のように使われます.しかし、その存在を全ての化学者が受け入れてきたわけではありません.
過酸化物は、酸素が通常よりも多く含まれている化合物で、その強力な酸化力が特徴です.対照的に、亜酸化物は酸素が通常よりも少ない状態で存在する化合物です.
pbO型構造は、現在では最もシンプルな鉄系超伝導体の結晶構造として知られます.
ガリウムは、毒性が少なく、反応性も激しくなく安全に使用することができる唯一の液体金属元素です.
電子が原子から離れて存在している物質、それがエレクトライド(電子化物)です.電子が原子のいないサイトを単独で占め、あたかも負の電荷を持つ陰イオンであるかのように振る舞います.
圧電効果を示す材料の中で、最強クラスのシェアを誇るのがチタン酸ジルコン酸鉛(PZT)です.優れた圧電特性と良好な温度特性を示すことから、圧電セラミックスの覇者として、有害な鉛を含むにも関わらず、現在も使用され続けています.
ジルコニアとハフニアは近年注目を集めている誘電材料です.薄膜状態での強誘電性が発見され、強誘電メモリの主役としてスターダムにのし上がろうとしています.
なぜ酸素の燃焼によってエネルギーを取り出すことができるのでしょうか.火はなぜ熱いのでしょうか.化学的に言い換えるのであれば、なぜ酸素の燃焼は常に発熱反応なのでしょうか.
磁気記録媒体では、磁石のS極・N極を0・1に対応させることで情報を記録します.磁気記録媒体として代表的なものは磁気テープとハードディスクドライブ(HDD)です.
を含むと軟らかくなり乾かすと固まる粘土は、造形材料として一級の性質を持ちます.その利用は古代から家屋や土器、粘土板の材料として始まり、「粘土には1000の利用法がある」とまで言われるようになりました.
イオン結合性の物質は、構成する陰イオンの種類によって分類されます.酸化物イオンを含む酸化物、フッ化物イオンを含むフッ化物、水素化物イオンを含む水素化物など.これらはどのような特徴を持つでしょうか.
結晶の配列方法や結晶粒の特性は、材料の物理的および化学的特性に大きな影響を与えます.結晶の形態の中でも「単結晶」と「多結晶」は、それぞれ異なる特性と応用分野を持っています.
一般に特別なものとして扱われる宝石ですが、その正体は鉱物であり結晶です.マクロな大きさの宝石は美しいですが、ミクロな大きさの結晶もなかなかきれいな構造をしています.
この反応では窒素と水素から直接アンモニアを作り出します.アンモニアは肥料の素となります.肥料が容易に合成でき、安定的に食物を供給できるようになった人類は、爆発的に増加していきました.
アパタイトは、歯や骨の原料からイオン伝導体、触媒、イオン交換材料まで多様な用途を持ちます.これらの特性は、アパタイトを構成するイオンが他のイオンと入れ替わりやすいことに起因することが多いようです.
現在のところ、CaTiO3に関する研究がそれほど盛り上がっているようには見えません.とはいえ、兄弟分のBaTiO3とSrTiO3が異常すぎるだけで、CaTiO3にも興味深い特性はいくつもあります.
SrTiO3は、誘電体からはじまり、超伝導体、熱電材料、触媒、イオン伝導体、半導体、発光材料分野で姿を見かけ、他の物質を形成するための基板としても抜群の有用性を誇ります.
酸化数の割当が、少なくとも過去に報告された類似の物質と比べておかしな値になっていないかを判断する手法の一つがBond valence sum (BVS)法です.
結晶構造はいたずらに複雑にはなりません.一見して複雑な構造であっても、部分部分をよく見れば、必ずシンプルな結晶構造から組み立てることができるようになっています
「準結晶」.一見では結晶のように見えるのだけれど、結晶であるはずのない奇妙な物質です.準結晶をめぐって高名な科学者が争い、結晶学会は固体の定義の見直しを迫られ、発見者はノーベル賞を受賞しました.
ところが、近年の材料探索の進展にともなって、液体と同等あるいはそれ以上のイオン伝導度を示す固体物質が開発されてきました.中でもリチウムイオン電池に用いるリチウムイオン伝導体の進化は著しく、報告された物質の種類も多岐にわたります.しかし、全…
鉄とは異なり、銅は錆びにくい金属です.それでも、屋外に出しておけば酸化し、錆(酸化銅)ができることがあります.銅が酸化して形成された酸化銅は、元の銅とは色も性質も全く異なります.
インターカレーションは、物質の結晶構造に存在する「すき間」にイオンや分子を入れ込むような反応を指します.元の物質 の結晶学的特徴や材料特性を保ったまま、新しい特性を加えることが可能です.
同じ組成を持ちながら異なる結晶構造を示す物質を総称して多形と呼びます.ほとんどの多形は互いによく似た見た目ですが、中には似ても似つかないものも存在します.
金は、他の金属では再現できない独特の輝きを持ちます.古来より王侯貴族を魅了してやまない黄金色はどのようにして生まれるのでしょうか.
光と物質の相互作用には直線的(一次関数的)なものだけでなく、二次関数的、三次関数的な高次のものが含まれることが知られていました.高次の効果を利用することで波長の異なる光を取り出すことができます.
錆だけが酸化鉄ではありません.鉄は磁石としての性質を持ち、その酸化物も磁石として振舞うことがあります.最古の磁石として有名なマグネタイトは、永久磁石だけでなく触媒材料としても活用されます.
LDHはアニオンを容易に挿入、交換、脱離することができます.電極材料、光触媒、吸収剤、生体材料など用途は様々であり、学術的・産業的に数々の応用がされてきました.
「硬い」ことは、それ自体に大きな意味を持ちます.人工的に数千万気圧級の圧力を実現しようとしたら、その環境に耐えられる硬さの材料が必要です.