はじめよう固体の科学

電池、磁石、半導体など固体にまつわる話をします

MENU

孤立電子対(非共有電子対):直接結合しなくても、物質を変える

孤立電子対(非共有電子対)は、目には見えませんが分子の形状や水素結合の形成を通じてその存在をアピールしてきます.孤立電子対の役割は構造を歪ませるだけではなく、様々な物性に顔を出します.

スピネル構造:複雑な構造と多様な物性

スピネルとは、マグネシウム(Mg)とアルミニウム(Al)からなる酸化物の天然鉱物であり、MgAl2O4の組成で表されます.スピネルの結晶構造をスピネル構造とよび、AB2O4の組成を持つ三元系物質でよく見られます.酸化物だけではなく、硫化物や窒化物でもスピ…

ハイエントロピー合金:全く新しい合金材料

これまでの合金はメインとなる元素を決めていましたが、ハイエントロピー合金では主役を定めず、複数の元素を比較的高濃度(多くは等濃度)で混合します.ハイエントロピー合金は、従来の合金よりも強度に優れるとされるほか、従来の合金では見られない様々…

固体における仕事関数、イオン化エネルギーと電子親和力の関係

半導体はバンドギャップで区分されますが、伝導バンド・価電子バンドの相対位置も同じくらい重要です.電池の電極材料や太陽電池などでもバンド位置は常に意識されます.

仕事関数:物質から電子を剥がすために必要なエネルギー

仕事関数は「バルク材料(固体または液体)」の電子を一つ取り除くのに必要なエネルギー量」を意味します.仕事関数の大小によって物質の反応性や安定性を評価することが可能になります.

イオン化エネルギーと電子親和力:そもそもどうやって測定するの?

イオン化エネルギーと電子親和力はは決して教科書の中だけの存在ではなく、物質の性質を予想するなど実用的な面を持った極めて基礎的なパラメータです.

リチウムイオン電池の負極材料:金属リチウムの代わりを見つけよう

負極は二次電池にとって重要な要素であり、電池全体の性能に大きな影響を与えます.新しい負極材料の開発では、これらの容量低下要因を抑制し、安全性・安定性・サイクル特性に優れた材料を選定する必要があります.

リチウムイオン電池の正極材料:インターカレーションと金属酸化物

リチウムイオン電池はのエネルギー密度に影響を与えているのが正極材料です.現在、正極材料として使用されている材料は主として金属酸化物であり、大きく3種類のグループに分けられます.

リチウムイオン電池:現代社会を支える最強の電池

リチウムイオン電池は高いエネルギー密度、高い電圧、長寿命、高安定性を併せ持ち、従来の二次電池とは一線を画します.リチウムイオン電池はある一つの大発明から生まれたわけではなく、多くの人が関わり築き上げたものを合体させることで可能になった、人…

ヤーン・テラー効果:電子数と配位の歪み

金属の配位構造において、金属イオンがある特定の数のd電子を持つ場合にのみ特異的に多面体が歪む場合があります.このような現象の一つがヤーン・テラー効果(Jahn–Teller effect)です.

結晶場理論と配位子場理論

d電子は金属イオンの種類によって数が異なり、全部で5つの軌道に収納されます.配位子のない状態では5つの軌道は互いにエネルギーが等しい(縮退している)ですが、それぞれ軌道の広がる方向が異なるため、配位子があるとエネルギーにズレが生じて状態が…

無料で読める学術誌:誰でも最先端の研究に触れられる!

世の中にはオープンアクセス論文というものがあります.オープンアクセス論文はいつでも誰でも無料で読むことができます.今回は、固体科学分野のうち、特に質の高いオープンアクセス論文誌を紹介します.