はじめよう固体の科学

電池、磁石、半導体など固体にまつわる話をします

MENU

固体

ハイエントロピー合金:全く新しい合金材料

これまでの合金はメインとなる元素を決めていましたが、ハイエントロピー合金では主役を定めず、複数の元素を比較的高濃度(多くは等濃度)で混合します.ハイエントロピー合金は、従来の合金よりも強度に優れるとされるほか、従来の合金では見られない様々…

固体における仕事関数、イオン化エネルギーと電子親和力の関係

半導体はバンドギャップで区分されますが、伝導バンド・価電子バンドの相対位置も同じくらい重要です.電池の電極材料や太陽電池などでもバンド位置は常に意識されます.

仕事関数:物質から電子を剥がすために必要なエネルギー

仕事関数は「バルク材料(固体または液体)」の電子を一つ取り除くのに必要なエネルギー量」を意味します.仕事関数の大小によって物質の反応性や安定性を評価することが可能になります.

閃亜鉛鉱型構造とウルツ鉱型構造:半導体を支える結晶構造

閃亜鉛鉱型構造とウルツ鉱型構造は、ABの組成で表される二元系物質の多くで見られる結晶構造であり、互いによく似た構造です.どちらも半導体材料でよく見られる構造であり、知らず知らずのうちにどちらかの構造を持つ材料を日常的に使用しているはずです.

蛍石型構造:イオン伝導がよく見られる基本的な結晶構造

蛍石型構造はAB2 の組成で表される結晶構造であり、多くの物質において見られます.イオン伝導を示す物質の多さが目立ちます.

配位構造と連結:結晶構造ができるまで

どんな複雑な結晶構造でも、一つ一つのパーツを見ればシンプルな形をしていることが多いです.多面体とその連結を考えることで、大多数の結晶構造も理解できます.

ミラー指数とX線の回折

ミラー指数は、単位胞の中における「方向」や「面」を記述する方法です.ミラー指数を定義しておくことにより、単位胞の「どこ」の話をしているかが一目で分かるようになります.

ダイヤモンド構造とダイヤモンド:世界一の硬さの秘密

ダイヤモンドは炭素の同素体であり、炭素の共有結合による強固な結合ネットワークを持ちます.ダイヤモンドは地球上で生成される物質の中で最も硬く、大きな熱伝導率と屈折率を誇ります.これらの際立った性質は工学分野で重宝されています.

塩化セシウム型構造:立方体+立方体

塩化セシウム(CsCl)型構造は、ABの組成で表される二元系物質の多くに見られる結晶構造です.一見、体心立方構造に見えますがそうではありません.

ブラべー格子:結晶構造を考える上での基本

空間格子は、対称性の観点から7つの結晶系に区分されます.さらに、格子内に複数の格子点を持つ、より大きな格子を採用することで、全ての空間格子は14種類のブラべー格子に区分することができます.

ペロブスカイト構造:機能の宝庫

ペロブスカイトとは、CaTiO3 の組成を持つ鉱物を指します.ペロブスカイトの結晶構造を指してペロブスカイト構造と呼びます.強誘電体、高温超伝導、巨大磁気抵抗、イオン伝導、負の熱膨張など、ペロブスカイト酸化物は「機能の宝庫」と言っても良いほどの多…

ヒ化ニッケル型構造:塩化ナトリウム型構造の親戚

ヒ化ニッケル(NiAs)型構造は、AB の組成で表される二元系物質の多くで見られる結晶構造です.あまり馴染みのない人も多いと思いますが、有名な塩化ナトリウム型構造との関連が深い重要な構造です.

ベガード則:格子定数と組成の関係、それは理論か近似か

固溶体のXRDを測定したとき、各組成のXRDパターンのピーク位置が連続的にずれていくことが知られています.このXRDパターンから格子定数を求め、「ベガード則」によって組成を(簡易的に)見積もることができます.

塩化ナトリウム型構造:最も基本的な二元系構造

更新 2024-2-23 塩化ナトリウム型構造(岩塩型構造、NaCl型構造、NaCl-type structure、rock salt structure) 塩化ナトリウム型構造は、の組成で表される二元系物質の多くに見られる結晶構造であり、三次元空間に原子をチェッカーボード状に並べたような配…

最密充填構造:最も単純な原子の敷き詰め方

体育館の床をバスケットボールで埋め尽くすことを考えます.すなわち、球体を二次元平面に敷き詰めることをイメージします.球体をどのように並べれば、空間を埋め尽くすことができるでしょうか.