はじめよう固体の科学

電池、磁石、半導体など固体にまつわる話をします

MENU

2022-01-01から1年間の記事一覧

アルカリ電池とマンガン電池:最も実用的な乾電池の系譜

マンガン電池とアルカリ電池は、両者とも亜鉛と酸化マンガンを用い、起電力も殆ど同じです.マンガン電池はすぐに電源が切れますが、アルカリ電池はマンガン電池の数倍の寿命があります.どのようにしてアルカリ電池が勝利をつかんだのでしょう.

水の電気分解:夢のエネルギー材料「水素」のクリーンな合成法

水に諸々の工夫をして電圧をかけると、水素と酸素が発生します.発生する物質が水素と酸素だけなので環境への害がありません.クリーンかつ温和な条件で水素を合成できる方法として注目されています.

熱電効果:排熱を電気エネルギーに変える

熱電材料と呼ばれる物質に熱(温度差)を与えると,高温部と低温部の間に電位差(電圧)が生じ、熱を直接、電気エネルギーに変換する事が可能です.事実上無尽蔵の熱エネルギーを、扱いやすい電気エネルギーに変換できる技術として期待されています.

蛍石型構造:イオン伝導がよく見られる基本的な結晶構造

蛍石型構造はAB2 の組成で表される結晶構造であり、多くの物質において見られます.イオン伝導を示す物質の多さが目立ちます.

配位構造と連結:結晶構造ができるまで

どんな複雑な結晶構造でも、一つ一つのパーツを見ればシンプルな形をしていることが多いです.多面体とその連結を考えることで、大多数の結晶構造も理解できます.

ミラー指数とX線の回折

ミラー指数は、単位胞の中における「方向」や「面」を記述する方法です.ミラー指数を定義しておくことにより、単位胞の「どこ」の話をしているかが一目で分かるようになります.

永久磁石:ずっと磁力が出るのは何故

永久磁石は強磁性体の中でも硬磁性体に分類され、磁化を反転させるのに必要な磁場(保磁力)が大きいこと、ゼロ磁場でも大きな残留磁化を持つことが特徴です.それゆえ、永久磁石は長期間に渡って大きな磁化を保持することが可能です.

半導体とドーピング:電気を自由自在に制御できる材料

半導体が絶縁体と区別される点、それは不純物の添加(ドーピング)によって電気特性を劇的に変化させることが可能な点です.ドーピングにより、半導体は「電気の流れる状態」「電気の流れない状態」を自在に切り替えることが可能となります.

燃料電池:水素と酸素を直接電気に変換する技術

燃料電池は、分子の化学エネルギーを直接電気エネルギーに変換できるエネルギー変換装置です.燃料電池は、クリーンかつ高効率な発電を可能にし、家庭用・車載用への応用を目されるなど次世代のエネルギーとして注目されています.

アノードとカソード、正極と負極、陽極と陰極の違い

正極と負極、アノードとカソードは電池と電気分解どちらにも登場する用語ですが、何を指すかを理解していますか?

無料で読める論文を探すためのツールを紹介

オープンアクセス化の流れが生まれており、無料で読むことのできる論文が増えています.世の中には便利な手段が多くあり、無料で公開されている論文を見つけることのできるサービスが存在します.

学術論文を無料で読むための方法

学術論文は基本的に出版社の商品であり、読むためにはお金がかかります.しかし、近年では「合法的に」無料で論文にアクセスできる手段が増えてきており、最新の知識への壁はだいぶ取り払われつつあります.

ヒステリシス曲線:強磁性体の特性の全てがここに

軟磁性材料と硬磁性材料の違いは、材料のヒステリシス曲線を見れば明らかになります.ヒステリシス曲線は強磁性体を特徴づける重要なパラメータであり、どのような応用先が向いているかを判断する材料となります.強磁性体でなくとも、磁性体のヒステリシス…

ダイヤモンド構造とダイヤモンド:世界一の硬さの秘密

ダイヤモンドは炭素の同素体であり、炭素の共有結合による強固な結合ネットワークを持ちます.ダイヤモンドは地球上で生成される物質の中で最も硬く、大きな熱伝導率と屈折率を誇ります.これらの際立った性質は工学分野で重宝されています.

硬磁性と軟磁性:硬派な磁石と軟派な磁石

強磁性体には大きく二種類あり、硬磁性体および軟磁性体と呼ばれます.硬磁性体は磁場に対して「硬い」振る舞いをする物質で、軟磁性体は磁場に対して敏感に磁束密度が変わる物質です.

ダニエル電池:初めての実用的な電池

ボルタ電池の欠点を補うような形で生まれた電池がダニエル電池です.ダニエル電池はボルタ電池に比べて出力が大きく、水素が発生しないため、ボルタ電池の問題点を大部分解決しました.

塩化セシウム型構造:立方体+立方体

塩化セシウム(CsCl)型構造は、ABの組成で表される二元系物質の多くに見られる結晶構造です.一見、体心立方構造に見えますがそうではありません.

金属(導体)と絶縁体と半導体の違い:エネルギーバンドと電子の動き

物質を分類する方法は多岐にわたりますが、一つの方法は電気抵抗の大きさで区分することです.電気抵抗率の大きい物質を絶縁体と呼び、電気抵抗の小さい物質を金属と呼びます.

ブラべー格子:結晶構造を考える上での基本

空間格子は、対称性の観点から7つの結晶系に区分されます.さらに、格子内に複数の格子点を持つ、より大きな格子を採用することで、全ての空間格子は14種類のブラべー格子に区分することができます.

電気分解:電気の力で物質を創る

電気分解は「電気のエネルギーによって強制的に酸化還元反応を起こすこと」を意味します.電気分解は、水の電気分解による水素発生反応を筆頭に、塩素の単離、NaOHの製造、金属メッキ、金属の精錬など、産業の幅広い分野に顔を出します.

光触媒:太陽光を用いて化学反応を起こす夢のクリーン材料

光触媒は、豊富な太陽エネルギーを活用して化学反応を起こすことが可能な材料です.光のエネルギーを反応に転用することで、普通の触媒では不可能な化学反応を実現するポテンシャルを秘めています.

ペロブスカイト構造:機能の宝庫

ペロブスカイトとは、CaTiO3 の組成を持つ鉱物を指します.ペロブスカイトの結晶構造を指してペロブスカイト構造と呼びます.強誘電体、高温超伝導、巨大磁気抵抗、イオン伝導、負の熱膨張など、ペロブスカイト酸化物は「機能の宝庫」と言っても良いほどの多…

鉛蓄電池:最初の充電可能な電池

鉛蓄電池は、1859年に発明された、史上初めての充電可能な電池(二次電池)です.発明から150年以上たってなお鉛蓄電池は産業で重要な存在であり、主に自動車用のバッテリーとして利用されています.

ヒ化ニッケル型構造:塩化ナトリウム型構造の親戚

ヒ化ニッケル(NiAs)型構造は、AB の組成で表される二元系物質の多くで見られる結晶構造です.あまり馴染みのない人も多いと思いますが、有名な塩化ナトリウム型構造との関連が深い重要な構造です.

金の陰イオン:金属だって負の電荷をまとう

更新 2024-2-23 金(Gold)とその歴史 黄金は何千年もの間、人類を魅了してきました.古代オリエント,古代中国,古代アメリカなど,地域や文明は違えど,黄金は非常に価値のある物品として,ときに王族や貴族の権力の象徴として扱われてきました.金をめぐ…

VSEPR則(原子価殻電子対反発則):分子の形を決めるものは何か

世の中には様々な分子があり、それぞれ形状が異なります.価電子の反発を考慮することで分子の形状を予測するモデルが 原子価殻電子対反発モデル(VSEPR則)です.

ベガード則:格子定数と組成の関係、それは理論か近似か

固溶体のXRDを測定したとき、各組成のXRDパターンのピーク位置が連続的にずれていくことが知られています.このXRDパターンから格子定数を求め、「ベガード則」によって組成を(簡易的に)見積もることができます.

エリンガム図:金属の単体を得るために必要な情報

エリンガム図は、ある温度と雰囲気を与えたときにどのような化合物が安定に存在するかの手がかりを与えます.多くの情報を引き出せるエリンガム図ですが、見た目があまりに複雑なことが初学者を遠ざける原因となっています.

フロスト図:元素の標準電極電位をもう少し見やすく

フロスト図は、ある酸化数が他の酸化数に比べてどの程度安定であるかを視覚的に分かりやすく示した図です.標準電極電位そのものをプロットしているわけではないものの、安定性の議論をするのに向いています.

ラチマー図:元素の標準電極電位を一枚の図で

酸化されやすい金属もあれば酸化されにくい金属もあります.酸化されやすい金属の中でも、安定な酸化数は金属によって異なります.ラチマー図は、複数の酸化状態を持つ化学種の標準電極電位を表現する方法です.