はじめよう固体の科学

電池、磁石、半導体など固体にまつわる話をします

MENU

物質

ヒューム-ロザリーの法則:合金が形成するためのルール

金属元素の組み合わせによって「混ざり合うもの」と「混ざり合わないもの」が存在します.William Hume-Rotheryは過去の膨大な実験データを整理し、固溶体が形成するための要因を見出しました.この規則は今日、Hume-Rothery則と呼ばれます.

逆ペロブスカイト(アンチペロブスカイト):カチオンとアニオンが入れ替わったペロブスカイト

ABX3 の組成でA,Bがカチオン、Xがアニオンを担当するのがペロブスカイトなわけですが、逆ペロブスカイトではその役割が入れ替わります.すなわち、Na3OClのように、Xにカチオン種、A,Bにアニオン種が入ります.ペロブスカイトが多様な機能を示すことから予想…

窒化鉄:最強と謳われた幻の磁石

窒化鉄はあらゆる磁石の中で最大の磁力を示し、しかも非常に安価かつ資源的に豊富な鉄と窒素のみから構成されます.しかし、1972年の初報以来、実験の再現性に問題を抱えており、一時は幻の磁石と考えられていました.

ルチル構造:「赤」を意味する結晶構造

ルチルとは二酸化チタン(TiO2)からなる酸化物鉱物の一種です.ルチルの結晶構造をルチル構造と呼び、AB2の組成を持つ二元系物質でよく見られます.

二酸化チタン(TiO2):原点にして頂点の光触媒材料

1972年、酸化チタンと白金からなるセルに紫外光を照射すると、水が水素と酸素に分解される現象が報告されました.光触媒の仲間が増えてなお、TiO2は光触媒の代表として君臨しています.安価、安定、無毒であり、産業的に利用する上でのメリットが大きいです.

水素吸蔵合金:水素を貯める仕組みと利用法

水素吸蔵合金は、その名の通り水素の吸蔵が可能な合金材料であり、輸送・貯蔵の簡易さから注目を集めています.材料によっては、自身の体積の1000倍もの水素を吸うことができます.

マーデルング定数とマーデルングエネルギー:イオン結晶の安定性とその応用

イオン結晶中の静電エネルギーを計算したものが、今回の主題であるマーデルング定数です.マーデルング定数の計算では、あるイオンの周りにあるイオンによる静電エネルギーを全て足し合わせることによって構造の安定性を判断します.

三角格子、カゴメ格子、ハニカム格子.... :様々な磁気格子と磁気フラストレーション

世の中には、正方格子や三角格子だけでなく、多種多様な格子が考案され、現実の物質で実現しています.単純な磁気秩序だけではなく,時として量子スピン液体、スピンアイス、スピングラスなど時にエキゾチックな磁気物性の舞台となることが知られています.…

サマコバ磁石:かつての最強磁石

希土類磁石は、希土類元素と遷移金属元素の合金(あるいは金属間化合物)磁石と定義され、しばらく新材料の途切れていた磁石業界復権の鍵となりました.サマコバ磁石は、最初に発見された実用的な希土類磁石です.

ポーリングの規則:結晶構造が成り立つためのルールとその現実

イオン結合性の物質において、どのような結晶構造が実現するか、あるいは実現しないかを明示した5つの経験則をポーリングの原理と呼びます.ポーリングの原理では、結晶構造中でカチオン(アニオン)がどのような局所構造にあるかを規定します.

ネオジム磁石:現代文明を支える最強の磁石

現在の磁石の頂点に座しているのがネオジム磁石です.ネオジム磁石の性能他の磁石の追随を許しません.ネオジム焼結磁石の生産量は年10万トンを超え、しかも年々生産量が増大しています.現在の磁石の市場は、安く低性能なフェライト磁石と高価で高性能なネ…

チタン酸バリウム(BaTiO3):驚異のチタバリと呼ばれた誘電体

チタン酸バリウムは代表的な誘電材料(電気を蓄える材料)であり、その優れた誘電性、強誘電性、圧電性により、セラミックコンデンサやサーミスタ、圧電素子など様々な用途に使用されています.

HSAB則:化学における硬さと軟らかさ

化学に登場する酸と塩基、特にルイス酸・ルイス塩基には硬さの概念があります.酸と塩基の親和性の傾向を明らかにし、固体の結晶構造を形作るのに大きな役割を担います.

酸水素化物:水素アニオンを取り込んだ新しいセラミックス

一つの物質中に酸素アニオンと水素アニオンの両方のアニオンを含む物質が数多く知られ、酸水素化物と呼ばれます.安定な酸化物と不安定な水素化物を組み合わせた物質はどのような性質を示すのでしょうか.

ヒドリド(Hydride):水素の陰イオンとその高い反応性

水素は、最もありふれた元素でありながら非常に特殊な元素でもあり、正と負のいずれの電荷の状態をとることができます.陰イオン(アニオン)となった水素をヒドリド(Hydride)と呼び、強い還元力、強い塩基性、高い圧縮性を示します.

グラフェン:世界一薄い究極の二次元材料

グラフェンは、炭素原子がハニカム状の二次元層を組んだ、原子一層分の厚みしか無い究極の二次元材料です.革新的な材料であるにも関わらず、黒鉛(グラファイト)をセロテープで剥がすという冗談のような方法で製造されました.

孤立電子対(非共有電子対):直接結合しなくても、物質を変える

孤立電子対(非共有電子対)は、目には見えませんが分子の形状や水素結合の形成を通じてその存在をアピールしてきます.孤立電子対の役割は構造を歪ませるだけではなく、様々な物性に顔を出します.

スピネル構造:複雑な構造と多様な物性

スピネルとは、マグネシウム(Mg)とアルミニウム(Al)からなる酸化物の天然鉱物であり、MgAl2O4の組成で表されます.スピネルの結晶構造をスピネル構造とよび、AB2O4の組成を持つ三元系物質でよく見られます.酸化物だけではなく、硫化物や窒化物でもスピ…

ハイエントロピー合金:全く新しい合金材料

これまでの合金はメインとなる元素を決めていましたが、ハイエントロピー合金では主役を定めず、複数の元素を比較的高濃度(多くは等濃度)で混合します.ハイエントロピー合金は、従来の合金よりも強度に優れるとされるほか、従来の合金では見られない様々…

固体における仕事関数、イオン化エネルギーと電子親和力の関係

半導体はバンドギャップで区分されますが、伝導バンド・価電子バンドの相対位置も同じくらい重要です.電池の電極材料や太陽電池などでもバンド位置は常に意識されます.

仕事関数:物質から電子を剥がすために必要なエネルギー

仕事関数は「バルク材料(固体または液体)」の電子を一つ取り除くのに必要なエネルギー量」を意味します.仕事関数の大小によって物質の反応性や安定性を評価することが可能になります.

イオン化エネルギーと電子親和力:そもそもどうやって測定するの?

イオン化エネルギーと電子親和力はは決して教科書の中だけの存在ではなく、物質の性質を予想するなど実用的な面を持った極めて基礎的なパラメータです.

リチウムイオン電池の負極材料:金属リチウムの代わりを見つけよう

負極は二次電池にとって重要な要素であり、電池全体の性能に大きな影響を与えます.新しい負極材料の開発では、これらの容量低下要因を抑制し、安全性・安定性・サイクル特性に優れた材料を選定する必要があります.

リチウムイオン電池の正極材料:インターカレーションと金属酸化物

リチウムイオン電池はのエネルギー密度に影響を与えているのが正極材料です.現在、正極材料として使用されている材料は主として金属酸化物であり、大きく3種類のグループに分けられます.

閃亜鉛鉱型構造とウルツ鉱型構造:半導体を支える結晶構造

閃亜鉛鉱型構造とウルツ鉱型構造は、ABの組成で表される二元系物質の多くで見られる結晶構造であり、互いによく似た構造です.どちらも半導体材料でよく見られる構造であり、知らず知らずのうちにどちらかの構造を持つ材料を日常的に使用しているはずです.

蛍石型構造:イオン伝導がよく見られる基本的な結晶構造

蛍石型構造はAB2 の組成で表される結晶構造であり、多くの物質において見られます.イオン伝導を示す物質の多さが目立ちます.

配位構造と連結:結晶構造ができるまで

どんな複雑な結晶構造でも、一つ一つのパーツを見ればシンプルな形をしていることが多いです.多面体とその連結を考えることで、大多数の結晶構造も理解できます.

ミラー指数とX線の回折

ミラー指数は、単位胞の中における「方向」や「面」を記述する方法です.ミラー指数を定義しておくことにより、単位胞の「どこ」の話をしているかが一目で分かるようになります.

ダイヤモンド構造とダイヤモンド:世界一の硬さの秘密

ダイヤモンドは炭素の同素体であり、炭素の共有結合による強固な結合ネットワークを持ちます.ダイヤモンドは地球上で生成される物質の中で最も硬く、大きな熱伝導率と屈折率を誇ります.これらの際立った性質は工学分野で重宝されています.

塩化セシウム型構造:立方体+立方体

塩化セシウム(CsCl)型構造は、ABの組成で表される二元系物質の多くに見られる結晶構造です.一見、体心立方構造に見えますがそうではありません.